安徽兆吉口铅锌矿床微量及稀土元素地球化学特征与矿床成因探 讨

席明杰, 马生明, 乐成生² 1 中国地质科学院地球物理地球化学勘查研究所 自然资源部地球化学探测重点实验室 2 安徽省核工业勘查技术总院 DOI:10.32629/gmsm.v3i2.623

[摘 要] 兆吉口铅锌矿床是近年来江南过渡带新发现的大型铅锌多金属矿床,截止目前累计探明铅锌资源约50余万吨,矿体主要赋存在蓟县系 环沙组变质粉砂岩中,矿石主要以脉状充填形式,呈脉状或团块状产出。研究表明:区内岩石、矿石中微量元素含量差异较大,相对富集Pb、Zn、 Au、Cu、Ag、As、Cd、S、Sb等成矿与伴生元素;岩石、矿石样品稀土配分模式相似,δEu异常和Y/Ho比值均表明矿石与地层、岩浆岩之间 存在继承关系,具有同源性。环沙组变质粉砂岩在成矿中起主导作用,提供了主要的金属和矿化剂元素,花岗闪长斑岩提供了促使成矿与伴生元 素活化的热液。成矿热流体主要来自深部岩浆,成矿作用发生于低温高氧逸度的氧化环境,属浅成低温热液矿床。 [关键词] 微量元素;稀土元素;成矿物质来源;矿床成因;兆吉口铅锌矿床

引言

兆吉口铅锌矿床地处安徽省池州市东至县北东方向15公里处,是安徽 省核工业勘查技术总院新发现的一座大型铅锌多金属矿床,截止目前累计 探明铅锌资源50余万吨,其发现被誉为江南过渡带矿产勘查工作的重大突 破。该矿床产于长江中下游成矿带与皖南成矿带过渡区域,矿体主要赋存于 中元古界蓟县系溪口岩群环沙组中,与长江中下游成矿带最主要的5个"层 控"控矿层位(常印佛等,1991)截然不同,使得该矿床成为区域内地质找矿 工作的新焦点而备受关注。但由于矿床勘探周期较短,基础研究工作相对薄 弱,多数地质工作者更关注矿床成矿规律及勘查找矿(曹达旺等,2010;段开 兵等,2013;刘艳鹏等,2015、2017;Liuet.Al.,2019),仅极少数研究者 对矿床的成因等进行了初步探讨(刘晓燕等,2015),成矿理论研究不够深入, 尤其是对矿床地球化学特征及成因研究较少。为此,本文以钻孔样品为研究 对象,通过对矿区内各类岩石、矿石样品微量、稀土元素地球化学特征进行 研究,初步探讨了矿区内成矿物质的可能来源与矿床成因,为区内进一步开 展地质找矿工作提供地球化学参考信息。

1 地质概况

兆吉口铅锌矿床位于扬子板块与大别造山带的过渡区,毗邻安庆一贵 池矿集区,地处江南过渡带西南端。是一个经历多期构造运动的区域,尤以 印支运动最为强烈,多期构造运动使得区内不同时代地层发生了不同程度 褶皱,形成一系列的褶皱和断裂构造;区域发育中-新元古界、古生界及新 生界地层,尤以中元古界蓟县系溪口岩群变质砂砾岩及变质泥质粉砂岩和 粉砂质泥岩、新元古界青白口系历口群和南华系休宁组绿片岩相浅变质岩 分布最为广泛;矿区及外围区域岩浆活动极不频繁,仅在外围北部6.5km 处出露戴村花岗闪长斑岩体(肖金根,2014)。

矿区内地层出露简单,自老至新依此为中元古界蓟县系环沙组下段、 新元古界青白口系葛公镇组上、下段和第四系(图1)。环沙组下段主要分 布于矿区西部及西北部,岩性为中薄层浅变质粉砂岩;葛公镇组上段分布 于矿区东部,岩性主要为变泥岩-粉砂质泥岩-粉砂岩组合,下段分布于矿 区西南部,岩性为变粉砂质泥岩-粉砂岩-复成分砾岩等组合。区内构造活 动强烈,北东向东至断裂(F1)及其派生的次级断裂为区内最主要的控矿及 容矿构造(乐成生和揭祥葵,2012;傅仲阳等,2018);岩浆活动较弱,地表 仅见几条极小规模的石英闪长斑岩和花岗斑岩岩脉,呈北东向-北北东向 分布(安徽省核工业勘查技术总院,2011)。

图1 安徽兆吉口铅锌矿床地质简图

1-第四系; 2-新元古界青白口系葛公镇组上段; 3-新元古界青白口系 葛公镇组下段; 4-中元古界蓟县系环沙组下段第三小层; 5-中元古界蓟县 系环沙组下段第二小层; 6-中元古界蓟县系环沙组下段第一小层; 7-石英 闪长斑岩脉; 8-花岗斑岩脉; 9-F1东至断裂; 10-勘探线及采样钻孔位置 区内矿体赋存于环沙组变质粉砂岩中,受东至断裂下盘及其次级断裂构造 控制,矿石主要以脉状充填形式,呈脉状或团块状产出,少数呈薄板状或透 镜状产出。矿石矿物主要包括方铅矿、闪锌矿和黄铁矿,少量白铁矿、黄铜 矿和钛铁矿,以及极少量辉钼矿。研究区地层普遍经历了区域绿片岩相弱变 质作用,围岩蚀变主要为硅化、黄铁矿化和碳酸盐化,其次为绢云母化、绿 泥石化和粘土化等,此外还发育褐铁矿化和重晶石化(段开兵等,2013)。

2 样品采集与分析

本文中变质粉砂岩(V-4-543、V-5-90、V-5-420)、闪长岩脉(V-4-561) 和矿石(V-4-402、V-4-501)样品采自矿区V号勘探线ZKV-4、ZKV-5钻孔中; 由于矿区地表及钻孔深部未见花岗闪长斑岩体,仅见与矿体平行产出的闪 长岩细脉,故花岗闪长斑岩样品(ZJD01、ZJD02、ZJD03)采自矿区北部的戴 村岩体,风化较强烈。另有部分花岗闪长斑岩(D10-5-1*、D10-5-2*、 D10-69*)和矿石(D10-34*、D10-9*、D10-18*)样品引自陈健,2012。

研究样品的微量、稀土元素分析测试工作在中国地质科学院地球物理 地球化学勘查研究所中心实验室完成,结果见表1、2。其中Au元素用无火 焰原子吸收光谱法(ANN)分析,Ag元素用发射光谱法(AE)分析,As、Sb、Hg

Geological and Mineral Surveying and Mapping

元素用原子荧光光谱法(AFS)分析,Cs、Ga、Ba、Nb、Rb、Ti、Zr元素用X 荧光光谱法分析,Pb、Zn、Cu、Cd、Mo、V、Hf、Sr、Ta、Th、U和REE等元 素用电感耦合等离子体质谱法(ICP-MS)分析。

3 分析结果

- 3.1微量元素地球化学
- 3.1.1亲石元素

矿区内同类岩石中微量元素含量变化不大,但不同类型岩石间元素含 量差异较大,尤以花岗闪长斑岩中微量元素富集特征最为明显(表1)。与中 国东部地壳平均值(迟清华等,2007)相比,变质粉砂岩中除Ba、La和Ti等元 素相对富集,形成明显的"峰"外,其余元素含量均接近或低于中国东部地 壳平均值,Sr元素在变质粉砂岩中表现为明显的"峰""谷"两极(图2a); 花岗闪长斑岩和闪长岩脉中,除Ba、Rb和U元素富集形成较明显的"峰" 外,Th、Sr、Ta、La、Ce、Sm和Nb等元素则表现为极弱富集,但Th和Sr又在 样品ZJD01、ZJD02和ZJD03中表现为明显贫化,特别是Sr元素,形成明显的 深"谷"而区别于其它样品,其余元素含量均接近或低于中国东部地壳平 均值(图2b);矿石中微量元素特征与变质粉砂岩和花岗闪长斑岩相似,除 Ta、U相对富集形成"峰"外,Ba、Th和Ti元素含量相对偏低,形成了"谷",Sr 元素含量在矿石中表现为明显的"谷""峰"两极。

3.1.2成矿与伴生元素

区内各类岩石中,除Au、As在闪长岩脉中富集外,其余成矿及伴生元素 均在矿石中高度富集(表1)。成矿元素Pb、Zn、Au含量最大值分别为26500 ×10⁻⁶、108570×10⁻⁶和349×10⁻⁹,与Pb、Zn成矿密切伴生的Ag、Cd、Hg元 素含量最大值为15542×10⁻⁹、186570×10⁻⁹和7732×10⁻⁹,矿化剂元素S的含 量则高达66717×10⁻⁶。

与中国东部地壳平均值相比,变质粉砂岩相对富集Au、As、S和Sb元素,表现为明显的"峰",Cd元素含量相对较低,形成显著的"谷"(图3a);花岗闪长 斑岩和闪长岩脉相对富集Au、Cu、Ag、Mo、Sb和Ga元素,尤以Sb的"峰"较为 典型,而Pb、Zn、Cu和S元素含量相对较低,在戴村岩体(ZJD01、ZJD02和ZJD03) 中表现为明显的"谷"(图3b);矿石中矿化伴生元素极大富集,主成矿元素Pb、Zn、Au的平均值分别是中国东部地壳平均值的690倍、439倍和166倍,不同样品 元素含量变化显著,表现为跳跃式变化,仅Ga表现为极弱的"谷"(图3c)。

第3卷◆第2期◆版本 1.0◆2020年

文章类型:论文|刊号 (ISSN): 2630-4732 / (中图刊号): 561GL001

Ba Rb Th Nb Ta La Ce Sr Sm Zr Hf Ti Tb Yb U 图2 主要类型岩(矿)石样品中微量元素的标准化蛛网图(a-变质粉砂岩;

b-花岗闪长斑岩和闪长岩脉; c-矿石)

3.2稀土元素地球化学

3.2.1变质粉砂岩

变质粉砂岩样品的稀土元素含量(ΣREE)介于(133⁻¹⁹¹)×10⁻⁶(表2), 平均值为158×10⁻⁶(n=4),与中国东部地壳稀土元素含量(Σ REE=156.23)(迟清华等,2007)相近。在球粒陨石标准化的配分曲线中呈右 倾模式(图4),轻、重稀土元素分异较强,(La/Yb)_x=6.37^{-112.9},轻、重稀 土元素内部分异作用较弱,(La/Sm)_x=2.61⁻³.22,(Gd/Yb)_x=1.48⁻²2.68,Eu 为极弱负异常,δEu=0.700⁻⁰.941,Ce表现为无异常或极弱负异常,δ Ce=0.959⁻¹.002。

Copyright © This word is licensed under a Commons Attibution-Non Commercial 4.0 International License.

地矿测绘

第3卷◆第2期◆版本 1.0◆2020 年

Geological and Mineral Surveying and Mapping

3.2.2花岗闪长斑岩与闪长岩脉

花岗闪长斑岩样品的稀土元素含量(Σ REE)介于(95[~]197)×10⁻⁶之间 (表2),平均值为144×10⁻⁶(n=5),略低于中国东部地壳稀土元素含量(Σ REE=156.23)。在球粒陨石标准化的配分曲线中呈右倾模式(图5),轻、重 稀土元素分异较强,(La/Yb)_x=5.31[~]16.2,轻、重稀土元素内部分异作用相 对较弱,(La/Sm)_x=1.26[~]3.80,(Gd/Yb)_x=2.14[~]3.21,Eu表现为极弱的负异 常, δ Eu=0.701[~]0.975,Ce出现极弱正、负异常, δ Ce=0.768[~]1.071。

闪长岩脉样品的稀土元素含量(Σ REE)为180×10⁻⁶(图2),略低于中国 东部地壳稀土元素含量(Σ REE=156.23)。球粒陨石标准化曲线与花岗闪长 斑岩相似,亦呈右倾模式(图5),轻、重稀土元素分异较强,(La/Yb)_x=12.3, 轻、重稀土内部分异也相对较弱,(La/Sm)_x=3.06,(Gd/Yb)_x=2.61,Eu、Ce 均表现为极弱负异常, δ Eu=0.777、 δ Ce=0.990。

图5 花岗闪长斑岩和闪长岩脉的球粒陨石标准化稀土配分曲线 3.2.3铅锌矿石

矿石中稀土元素组成复杂,含量差异较大,网脉状铅锌矿石样品稀土平均含量(ΣREE=123.6)明显高于含铅锌矿石英脉样品(ΣREE=64.0)(表2)。 在球粒陨石标准化的配分曲线中呈右倾模式(图6)。

依据标准化配分曲线,大致可将其分为三组:第一组以样品V-4-402为代表,稀土总量ΣREE=139×10⁶,轻重稀土元素分异强,(La/Yb)_x高达19.9,轻、 重稀土元素内部分异相对较强,(La/Sm)_x=3.63,(Gd/Yb)_x=3.52,Eu和Ce表现为 极弱负异常,δEu=0.769,δCe=0.944;第二组以样品V-4-501和D10-18*为代 表,稀土总量变化较大,ΣREE介于(49[°]108)×10⁶之间,轻重稀土分异较 强,(La/Yb)_x=5.49[°]13.6,与重稀土元素相比,轻稀土内部分异作用相对较 强,(La/Sm)_x=2.89[°]3.66,(Gd/Yb)_x=1.98[°]2.53,Eu呈极弱正异常,δEu=1.097[°]1.231, Ce呈极弱负异常,δCe=0.932[°]0.940;第三组以含矿石英脉样品D10-34*和 D10-9*为代表,除稀土元素总量较低外,其余特征与第二组网脉状矿石相似, ΣREE介于66×10_x到77×10_x之间,轻重稀土元素分异较弱,(La/Yb)_x=3.67[°]7.56, 轻、重元素内部分异作用相对较弱,(La/Sm)N=2.67[°]2.83,(Gd/Yb)_x=1.56[°]3.13,但 Eu呈明显正异常,δEu=2.904[°]2.929,Ce表现为极弱负异常,δCe=0.853[°]0.891。

文章类型:论文|刊号(ISSN): 2630-4732 / (中图刊号): 561GL001

4 讨论

4.1成矿物质来源分析

矿区岩(矿)石中微量元素含量差异较大,Th、Ta、Sr、Ta等元素出现 明显的异常,特别是Sr元素在同类样品中出现了明显的"峰""谷"分极现 象,且在花岗闪长斑岩中受风化作用影响亏损更强烈。对比岩石和矿石微 量元素蛛网图(图2)发现,矿化作用并未改变微量元素分布的基本特征,矿 石基本继承了地层和岩浆岩的共有特征,二者共同参与了区内成矿作用。

矿化与伴生元素蛛网图(图3)也证实了这一认识,区内岩石、矿石中均 富集Pb、Zn、Au、Cu、Ag、As、Cd、S、Sb等元素,其富集顺序为矿石>闪 长岩脉>粉砂岩>花岗闪长斑岩(图7),暗示区域内地层、岩浆岩均有可能 为成矿提供物源。

矿区岩石、矿石中稀土元素球粒陨石标准化曲线较为相似,均呈轻稀土富 集的右倾模式,除含矿石英脉样品稀土元素总量较低、具明显的正Eu异常外, 其它两组矿石稀土元素组成与粉砂岩、花岗闪长斑岩和闪长岩脉相似,均见Eu 的弱负异常或极弱正异常,具有地层和岩浆岩的共同特征(图4、5和6)。

图7 不同岩(矿)石中成矿及伴生元素富集程度

研究表明,大自然中Y、Ho元素丰度变化范围较宽,但Y/Ho比值稳定 (Jochum and Seufert, 1986; Anders and Grevess, 1989),在球粒陨石中约 为24-36 (Bau, 1996)。Y/Ho比值不受成岩(矿)及变质作用干扰,就同源岩石、 矿物而言,其Y/Ho-La/Ho大体呈水平分布(Bau and Dulski, 1995),可用其初步 判别岩/矿石的同源性问题(席明杰等, 2013)。尽管兆吉口矿区岩石、矿石中 Y/Ho值变化较大,但都分布于球粒陨石Y/Ho比值范围之内;矿石Y/Ho值整体与 变质粉砂岩接近,多集中在30^{~32}之间,亦见个别与花岗闪长斑岩、闪长岩脉相 近者,且均呈近水平分布(图8)。表明区内矿石与侵入岩具有同源性,显示岩浆 热液成因,但变质粉砂岩在成矿中起主导作用,可能提供了主要的成矿物质。

从矿区矿石主要呈脉状充填形式产出来看,矿体周围方解石、石英网 脉发育,显示成矿过程中热液活动强烈; 而戴村花岗闪长斑岩体距离矿区 约6.5km,与矿体产出无直接联系,推断花岗闪长斑岩体直接参与成矿的可 能性极小。由此认为区内Pb、Zn成矿是花岗闪长斑岩岩浆期后热液与环沙 组变质粉砂岩共同作用的产物,环沙组变质粉砂岩在成矿中起主导作用,

第3卷◆第2期◆版本 1.0◆2020年 文章类型:论文|刊号(ISSN): 2630-4732 / (中图刊号): 561GL001

提供了成矿必须的Pb、Zn等金属元素和矿化剂元素,花岗闪长斑岩则提供 了促使变质粉砂岩中成矿与伴生元素活化的热液。

图8 兆吉口铅锌矿床岩石与矿石中La/Ho-Y/Ho图 4.2成矿地球化学环境特征分析

研究区矿石矿物中出现方铅矿、闪锌矿、白铁矿、角闪石、碳酸盐化、 绿泥石化和绢云母化等中低温热液矿物,同时主成矿阶段包裹体均一温度在 140-200℃之间(张赞赞, 2013),表明含矿溶液形成于相对较低的温度条件下。

在岩浆热液体系中,氧逸度与热液体系的Eu²/Eu³浓度呈正相关,热液的δ Eu大小反映相对氧化还原程度,氧逸度值升高,δEu值变大,反之亦反 (Cantrell and Bryne,1987; 庞奖励等,1999);岩浆热液流体在低压下分异, δEu趋向于正异常(岳书仓等,1999)。矿区内岩石、矿石样品的δEu值存在过 渡关系,即δEu(矿石)>δEu(花岗闪长斑岩)>δEu(粉砂岩)>δEu(闪长岩 脉),矿石δEu值与地层、岩浆岩差异明显,反映成矿时溶液氧逸度较高,为相对 氧化环境;铅锌矿体埋藏深度均<350m,矿石Eu正异常,特别是含矿石荚脉中Eu 正异常,反映了成矿热液流体主要来源于深部岩浆,并在浅部地壳中经历了多 次分异。矿区内岩石、矿石样品中普遍见极弱的Ce负异常,且样品间无明显的 区别,说明区内矿石沉淀仅与岩浆热液活动有关,无其它热水溶液的参与。

综上推断来自地球深部的成矿热液在浅地壳部发生分异,热流体多次 萃取环沙组变质粉砂岩中的金属和矿化济元素,使其不断浓集,在运移到 东至断裂及其派生断裂时,由于压力骤然释放,导致含矿热液饱和沉淀,形 成脉状、网脉状铅锌多金属矿化体,成矿作用发生于低温高氧逸度的氧化 环境中,属浅成低温热液矿床。

5 结论

兆吉口矿区内岩石、矿石中微量元素元素含量差异较大,相对富集Pb、Zn、 Au、Cu、Ag、As、Cd、S、Sb等成矿与伴生元素,富集顺序为矿石>闪长岩脉 >变质粉砂岩>花岗闪长斑岩;岩石、矿石样品的稀土配分模式相似,均为右 倾型,地层、岩浆岩与矿石样品的δEu值存在过渡关系,δEu异常和Y/Ho比值 均表明矿石与地层、岩浆岩之间存在继承关系,具有同源性,显示岩浆热液成 因特征。区内成矿是花岗闪长斑岩岩浆期后热液与环沙组变质粉砂岩共同作 用的产物,变质粉砂岩在成矿中起主导作用,提供了主要的金属和矿化剂元素, 花岗闪长斑岩则提供了促使成矿与伴生元素活化的热液。成矿热液主要来自 深部岩浆,并在浅部地壳中经历了多次分异,成矿作用发生于低温高氧逸度的 氧化环境中,基本无其它热水溶液的参与,属浅成低温热液矿床。

致谢:

野外工作得到了安徽省核工业勘查技术总院领导和同志的大力支持, 稿件得到匿名评审老师的宝贵修改意见和建议,在此一并表示衷心的感谢。

[参考文献]

[1]常印佛,刘湘培,吴言昌.长江中下游铁铜成矿带[M].北京:地质出版 社,1991:1-379.

[2]曹达旺,陈永明,乐成生.东至县兆吉口铅锌多金属矿成矿地质特征

及找矿方向[J].上海地质,2010,31(S1):206-209.

[3]段开兵,庄天明,段吉琳.安徽东至兆吉口铅锌多金属矿床地质特征 及找矿方向[J].华东理工大学学报(自然科学版),2013,36(2):133-151.

[4]刘艳鹏,马生明,朱立新,等.安徽兆吉口热液型铅锌矿区元素迁移量 三维地球化学勘查模式[J].地学前缘,2015,(4):141-151.

[5]刘艳鹏,朱立新,马生明.安徽省兆吉口铅锌矿床成矿地球化学机制研究[J].地球学报,2017,(S1):75-77.

[6]Liu Yanpeng, Zhu Lixin, Ma Shengming, Guo Fusheng, Gong Qiuli, Tang Shixin, Gnanachandrasamy Gopalakrishnan, Zhou Yongzhang, Constraining the distribution of elements and their controlling factors in the Zhaojikou Pb – Zn ore deposit, SE China, via fractal and compositional data analysis[J]. Applied Geochemistry, 2019.

[7]刘晓燕,徐晓春,谢巧勤,等.安徽东至兆吉口铅锌矿床的地质和地球 化学特征及成因[J].大地构造与成矿学,2015,39(6):1072-1082.

[8]肖金根.安徽东至兆吉口铅锌矿地球化学特征及成因类型.地质学 刊,2014,38(3):365-373.

[9]乐成生,揭祥葵.安徽省东至县兆吉口铅锌矿成矿控制条件分析[J]. 科技与企业,2012,(4):105-107.

[10]傅仲阳,徐晓春,刘晓燕,等.皖南兆吉口铅锌矿床成矿时代的厘定 及其找矿指示意义[J].矿床地质,2018,37(3):463-480.

[11]安徽省核工业勘查技术总院.安徽省东至县兆吉口铅锌多金属矿 床成矿规律研究报告[R],2011.

[12]陈健.安徽东至杨老尖—龙门尖铅锌矿床地质地球化学特征研究 [D].东华理工大学,2012.

[13]迟清华,鄢明才.应用地球化学元素丰度数据手册[M].地质出版社,2007:107.

[14]Jochum K P, Seufert H M, Spette B. The solar system abundances of Nb,Ta and Y, and the relative abundances of refractory lithophile elements in differentiate planetary bodies[J]. Geochim. Cosmochim. Acta, 1986, 50:1173.

[15]Anders E, Grevess N. Abundances of the elements Meteoritic and solar[J]. Geochim. Cosmochim. Acta, 1989, 53:197.

[16]Bau M,Dulski P. Comparative study of yttrium and rare earth element behaviors in fluorine-rich hydro-thermal fluids[J]. Contrib. Mineral. Petrol., 1995, 119:213.

[17]Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho,Zr /Hf,and lanthanide tetrad effect[J].Contrib. Mineral. Petrol., 1996,123:23.

[18]席明杰,马生明,朱立新,等.内蒙古准苏吉花铜钼矿床稀土元素特征及对成矿作用的约束[J].中国稀土学报,2013,31(4):503-512.

[19]张赞赞.安徽东至地区铅锌(金)多金属矿床特征及成因研究[D].合肥工业大学,2013.

[20]Cantrell K J,Bryne R H. Rare earth element complexation by carbonate and oxalate ions[J].Geochim. Cosmochim. Acta, 1987, 51: 597.

[21] 庞奖励, 孙根年, 陈林. 黑山热液型矿床稀土元素的地球化学行为 [J]. 中国稀土学报, 1999, 17(2):157.

[22]岳书仓,徐晓春.火山-侵入杂岩带的成岩-成矿专属性[J].地学前缘,1999,(2):305-313.

基金项目:

中国地质调查局地质调查项目《矿集区矿产调查及深部找矿预测 (中国地质科学院地球物理地球化学勘查研究所)》,项目编号: DD20190571;《内蒙古黑鹰山地区矿产地质调查》,项目编号: DD20160040。

Copyright © This word is licensed under a Commons Attibution-Non Commercial 4.0 International License.

地矿测绘

第3卷◆第2期◆版本 1.0◆2020年

文章类型:论文|刊号(ISSN): 2630-4732 / (中图刊号): 561GL001

类型			变质#	沿砂岩				拔		闪长	网	脉壮	术矿石		含得	矿石英脉				
~ 1			~~~~	бен				ru.		岩脉										
样号		V−4−5	V−5−9	V−5−4	D10-3		ZJD01	ZJD02	ZJD03	D10-5	D10-5		V−4−5	₹-4-	4	V−4−50		D10-34	D10-9	D10-
		43	0	20	9*					-1*	-2*		61	02		1		*	*	18*
Рb		8.17	19.8	15.6	75.0		7.20	6.61	10.6	18.9	20.4		12.3	2650	0	153		21250	355	3456
Zn		105	65.5	95.8	164		40.0	39.0	101	97.2	101		231	3579	5	108570		19050	92.6	3274
Au		8.86	8.03	0.80	2.90		3.66	7.90	3.40	0.90	1.30		62.7	349		37.7		61.0	4.70	8.40
Cu		55.7	20.7	55.3	22.0		13.1	14.7	15.0	108	114		48.9	536		360		340	20.8	574
Ag		75.7	95.0	69.8	64.0		81.9	95.4	195	103	89.0		127	1554	2	3908		11000	150	2170
As		13.3	13.4	4.29	6.27		5.07	4.96	13.1	2.20	2.26		61.2	197		44.4		138	14.3	20.6
Cd		54.5	21.0	34.7	180		98.4	90.8	317	90.0	80.0		188	6232	3	186570		26000	450	5390
S		1725	421	649	-		110	970	741	-	-		1478	2491	3	66717		-	-	-
Hg		9.96	13.8	11.1	5.00		8.86	12.2	7.75	1.00	3.00		14.9	164)	7732		396	3.00	280
Mo		1.17	0.39	1.00	0.36		0.45	0.45	0.56	1.28	1.18		0.63	0.7	6	0.26		0.64	0.71	0.48
A		161	77.1	160	-		45.8	50.4	51.8	-	-		161	112		83.5		-	-	-
Ga		19.9	13.6	20.0	15.0		23.4	24.7	24.1	23.9	23.3		19.1	15.3	3	12.4		4.98	1.22	5.28
Sb		0.92	1.38	1.18	0.40		2.04	2.13	1.64	0.28	0.27		0.88	11.	D	5.51		13.5	0.30	2.28
Ba		740	356	2226	350		1316	7136	5803	657	652		886	399	1	427		142	32.6	122
Hf		4.07	3.62	3.96	-		5.46	5.20	6.36	-	-		3.71	4.1	1	2.78		-	-	-
Nb		12.0	5.48	13.0	-		10.7	11.9	10.1	-	-		10.6	9.8	3	5.74		-	-	-
Rb		54.5	52.1	44.2	70.0		153	147	166	107	102		59.5	70.3	2	44.9		50.5	5.67	27.9
Sr		479	111	1041	82.9		15.1	20.7	23.7	427	445		345	212		221		191	134	77.0
Ta		0.56	0.36	0.61	-		0.74	0.87	0.80	-	-		0.52	0.4	1	0.29		-	-	-
Th		2.56	5.48	2.63	6.32		6.86	6.85	7.21	8.31	7.65		2.46	1.4	5	1.50		2.41	0.52	3.12
Ti		5830	3405	5799	1500		2464	2102	2241	2940	2880		5988	454	3	3213		1260	1031	600
U		0.65	1.04	0.73	1.55		8.14	8.40	3.14	3.00	2.58		0.67	0.3	7	0.37		2.39	0.34	1.78
Zr		144	136	145	-		153	145	170	-	-		130	168		96.3		-	-	-

表1 兆吉口铅锌矿区主要类型岩(矿)石样品中成矿与伴生元素、微量元素分析结果

注:元素含量:w(Au、Ag、Cd、Hg)/10-9,w(其它)/10-6; "-"表示无数据;带"*"样品引自陈健,2012.

表2 兆吉口铅锌矿区主要类型岩(矿)石样品中稀土元素分析结果

类型		变质精	粉砂岩			花岗闪长斑岩						闪长岩 网脉状矿石				含矿石英脉			
++	V4-54	₹5-9	V5-42	D10-3		7.01	700	700	D10-5-1	D10-5-2				₽-4-40	₹4-50	D10-34	D10-9	D10-18	
件方	3	0	0 9		201	202	Z03	*	*		V4-561		2	1	*	*	*		
La	33.1	22.6	26.8	22.3		29.0	31.0	9.21	24.1	23.1		30.2		26.9	19.9	8.78	5.62	7.24	
Ce	69.7	45.8	62.3	44.6		50.4	57.0	29.1	45.8	44.0		66.0		52.9	39.2	15.5	9.26	13.8	
Pr	8.59	5.33	8.04	5.19		8.24	9.19	4.42	4.90	4.87		8.09		6.22	4.69	1.78	1.06	1.60	
Nd	35.6	21.3	33.5	20.3		33.3	37.1	20.6	18.8	18.6		33.2		25.1	19.0	7.15	44.0	6.55	
Sm	6.69	4.43	6.32	4.25		6.73	7.52	4.48	3.90	3.87		6.08		4.55	3.34	2.02	1.22	1.54	
Eu	1.71	0.98	1.83	1.02		1.42	1.58	1.04	1.13	1.12		1.46		1.08	1.30	2.36	1.46	0.65	
Gd	5.56	4.00	5.29	4.23		5.23	5.84	3.61	3.48	3.74		5.20		3.88	3.01	3.04	1.89	2.13	
Tb	0.81	0.68	0.78	0.65		0.77	0.85	0.53	0.47	0.45		0.77		0.54	0.48	0.49	0.26	0.28	
Dy	4.23	4.13	4.05	3.94		3.77	4.02	2.69	2.33	2.33		4.15		2.69	2.53	3.14	1.62	1.59	
Ho	0.70	0.72	0.65	0.74		0.59	0.64	0.44	0.40	0.40		0.69		0.43	0.43	0.59	0.29	0.30	
Er	1.93	2.04	1.75	2.24		1.60	1.69	1.22	1.10	1.12		1.92		1.13	1.10	1.63	0.68	0.91	
Tm	0.31	0.34	0.30	0.36		0.25	0.26	0.20	0.16	0.16		0.30		0.17	0.17	0.25	0.09	0.13	
Yb	1.70	1.97	1.60	2.31		1.41	1.47	1.14	0.98	1.06		1.62		0.89	0.96	1.58	0.49	0.87	
Lu	0.24	0.32	0.22	0.33		0.22	0.21	0.18	0.16	0.16		0.25		0.13	0.14	0.21	0.074	0.14	
Y	20.0	21.2	19.1	20.3		17.3	18.6	15.8	12.2	12.1		19.8		12.0	12.3	17.3	9.23	11.7	
Σ ree	191	136	173	133		160	177	95.0	120	117		180		139	108	66.0	77.0	49.0	
LREE	74.4	100	139	98.0		129	143	68.9	98.6	95.6		145		117	146	62.6	31.4	37.6	
HREE	15.5	14.2	14.7	14.8		13.8	15.0	10.0	9.08	9.43		14.9		9.86	8.82	10.9	5.39	6.34	
LREE/HR	4.81	7.07	9.48	6.60		9.33	9.56	6.88	10.87	10.14		9.74		11.8	16.5	5.73	5.82	5.93	
δEu	0.833	0.70	0.941	0.728		0.70	0.70	0.76	0.919	0.889		0.777		0.769	1.231	2.904	2.929	1.097	
δCe	0.966	0.96	1.002	0.959		0.76	0.79	1.07	0.959	0.948		0.990		0.944	0.940	0.891	0.853	0.932	
(La/Yb)	12.9	7.57	11.0	6.37		13.6	13.9	5.31	16.2	14.4		12.3		19.9	13.6	3.67	7.56	5.49	
(La/Sm)	3.04	3.14	2.61	3.22		2.64	2.53	1.26	3.80	3.67		3.06		3.63	3.66	2.67	2.83	2.89	
(Gd/Yb)	2.65	1.64	2.68	1.48		3.02	3.21	2.56	2.88	2.86		2.61		3.52	2.53	1.56	3.13	1.98	
	 				ä	E: 元素	含量:	w(REE),	/10-6;带	"*"样品。	SIE	自陈健,201	2.			 			