桥式同心分注工艺技术的应用实例分析

王安立 朱苗苗 李冰 张丽莎 赵丹 邹品国中国石油集团测井有限公司生产测井中心 DOI:10.32629/gmsm.v3i4.773

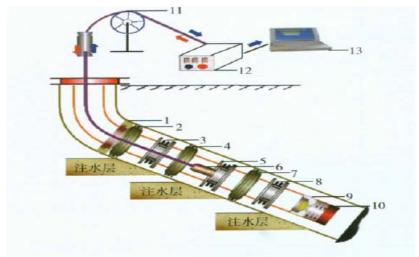
[摘 要] 随着长庆油田注采矛盾日益突出,为实现油田稳产,进行精细分层注水十分必要。在前期的空心分注、常规偏心分注、桥式偏心分注等井下分注工艺的基础上,针对空心分注和普通偏心分注误差大,投捞时间长,工作时间长以及桥式偏心分注工艺在施工时遇阻率高,仪器收张臂困难以及井斜较大时仪器不居中造成的流量偏差等问题,研究了桥式同心分注工艺,该工艺水嘴不需要进行投捞,减少施工时间,在大斜度井中的误差小于其他几种分注工艺,具有较好的应用效果,能够实现油田的精细注水。

[关键词] 桥式同心分注; 精细注水; 测调工艺

中图分类号: X383 文献标识码: A

前言

近年来,由于长庆油田的低孔低渗地质特征,大多数井均为低配注井,且由于储层的吸水差异大围绕提高分注工艺适应性、小水量测调效率和精度为目标,通过系列分注关键工具研制、小水量测调工艺优化,形成了长庆油田定向井小水量桥式偏心分注技术系列[1-4]。但由于开发的不断深入,采出水回注井,水平井、大斜度井逐渐增多,以前的测调工艺已经不能满足精细注水开发的要求,那么,研究新的测调工艺就十分必要。


1 桥式同心分注工艺简介

1.1桥式同心分注工艺技术原理

同心测调工艺技术利用机电一体化原理,采用边测边调的方式实现了对分注井的测试与调配^[5-6],桥式同心配水器与分注管柱一起下入,内部装有可调水嘴,电动验封仪和测调仪由电缆下到分注管柱,与工作筒对接,地面直读实现验封和流量测调,如图1所示。地面控制器通过电缆获取验封压力数据或者测调压力温度流量数据,并对验封仪和测调仪进行实时控制^[7]。

1.2桥式同心分注工艺管柱结构

桥式同心分注管柱一般由封隔器+配水器+球座+筛管+丝堵组成,根据精细注水层数的不同,选取相对应的封隔器和配水器的数。下图以三封三配的管柱为例。

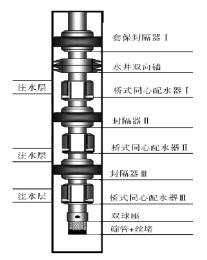
1—锚定器;2,4,7—注水封隔器;3,5,8—空心测调配水器; 6—三参测调仪;9—循环洗井阀;10—筛管丝堵;11—起下 动力系统;12—地面控制系统;13—地面数据处理系统

图 1 桥式同心配水工艺示意图

2 现场应用效果分析

2.1桥式同心成功率分析

随着桥式同心分注工艺的不断成熟,桥式同心调配井数量逐年增加,在未扣除空跑情况下,历年测试成功率在62.77-69.93%之间,三年平均测试成功率66.35%,扣除空跑测试情况下,成功率在78.41-81.77%,三年平均测试成功率为80.40%,较桥式偏心高出17%。


2.2桥式同心不同深度、不同井斜测 试成功率分析

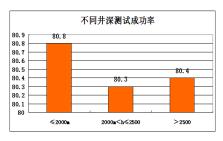
桥式同心在长庆油田应用以来,随着井深和井斜的增大,准确率逐渐下降,但是和桥式偏心相比,成功率较高。相对比桥式偏心,桥式同心受井深和井斜的影响较小,应用性更强,如图4、表1所示。

2.3桥式同心不同深度、不同井斜测试成功率分析

在多层调配井中,同心测调优势更 为明显:同心工作简外形小巧,集成程度 高,可进行多层任意设置,可满足精细化 配水要求,实现多层小卡距注水。

文章类型: 论文|刊号 (ISSN): 2630-4732 / (中图刊号): 561GL001

桥式同心分注管柱图


表 2 不同分注层数偏心同心工艺对比表

	历年测记	成功率(未	扣除空跑)		
72	69.93				
68			66.35		
66					
64	62.77				
60					
58	2012	2012	2014		
	2012	2013	2014		

	历年测试)		注空跑)	
3.00				
2.00	81.77			
1.00			81.04	
0.00				
9.00	78.41			
8.00	76.41			
7.00				
6.00				
	2012	2013	2014	

图3 桥式同心测试成功率分析柱状图

桥式同心在不同井深、井斜中测试 图4 成功率分析图

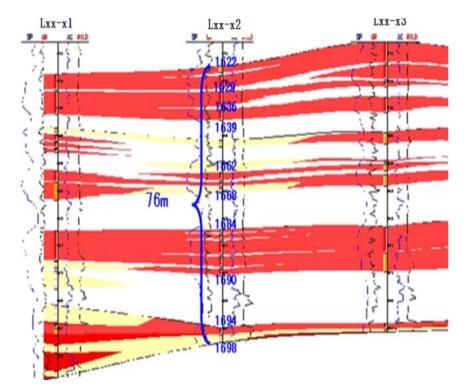


图 5 Lxx-xx 油层对比图

文章类型: 论文|刊号 (ISSN): 2630-4732 / (中图刊号): 561GL001

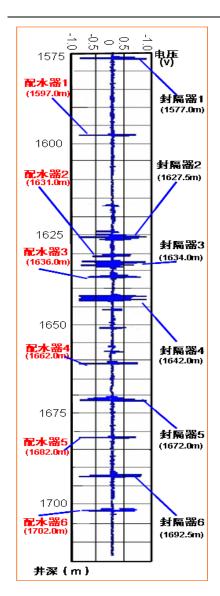


图6 Lxx-xx管柱示意图

2.4应用实例分析

Lxx-xx井位于陕西省志丹县,该 井储层厚度76米,最小夹层厚度2米, 下入6个配水器、6个封隔器,配水器最 小跨距4米。

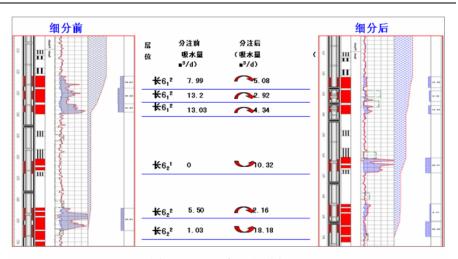


图 7 Lxx-xx 油层对比图

Lxx-xx井细分前注水层段为3层,吸水层4个。吸水厚度28m;细分后:注水层段为6个,吸水层6个,吸水厚度28m,增加大39m,剖面得到明显改善桥式同心在Lxx-xx井组细分后周围8口采油井开发效果明显,周围连通8口采油井平均单井日产液量由2.23m³↑2.36m³,日产油量由1.47t↑1.74t,含水率由33.9%↓30.5%,分层注水见效明显。

3 结论

- (1) 桥式同心调配在大斜度、深度井中应用效果明显优于其他测试方法。
- (2) 桥式同心调配的调配时间短,调配周期较长,且适合多层小卡距,适合广泛推广应用。
- (3) 桥式同心测试工艺在施工中应 该对注水水质进行控制, 降低遇阻率, 提 高测调成功率。

[参考文献]

[1]晏耿成,魏立军,杨会丰.大压差 可洗井封隔器研制与应用[J].石油矿场 机械,2014,43(1):69-71.

[2]巨亚锋,于九政,晏耿成,等.姬塬油田多层细分注水工艺技术研究[J].科学技术与工程,2012,12(18):4504-4511.

[3]王子建,于九政,晏耿成,等.新型免投捞堵塞器设计与试验研究[J].石油矿场机械,2012,41(10):33-36.

[4]李明,王治国,朱蕾,等.桥式偏心分层注水技术现场试验研究[J].石油矿场机械,2010,39(10):66-70.

[5]姜广彬,李常友,李国,等.海上注水井一体化测调技术研究[J].石油机械,2011,39(7):77-79.

[6]姜广彬,李常友,张国玉,等.注水井空心配水器一体化测调技术[J].石油钻采工艺,2011,33(4):99-101.

[7]李艳,侯军刚,康帅,等.桥式同心分注工艺技术在安塞油田多油层开发中的研究与应用[J].石油仪器,2013,27(6):63-64.